САЙТ Павла
Главная
Схемы Ветрогенераторы Собаки Стройка Книги О сельском хозяйстве и прочем


СХЕМЫ---->
СХЕМЫ АВТОЭЛЕКТРОНИКИ статьи № 1-50---->
СХЕМЫ АВТОЭЛЕКТРОНИКИ статьи № 51-100---->
СХЕМЫ АВТОЭЛЕКТРОНИКИ статьи № 101-150---->
СХЕМЫ АВТОЭЛЕКТРОНИКИ статьи № 151-200

Бесконтактная система зажигания.

В. ГОРКИН, А. ФЕДОРОВ

Тенденции развития современных автомобильных карбюраторных двигателей внутреннего сгорания предполагают повышение удельной мощности, степени сжатия, снижения токсичности выхлопных газов, повышение экономичности и надежности в эксплуатации.

Все это трудно, а подчас и невозможно, обеспечить без применения электроники, в частности, без электронной системы зажигания.

В статье рассмотрена транзисторная бесконтактная система зажигания с накоплением энергии в индуктивности, управляемая параметрическим взаимоиндуктивным датчиком. Такая система должна обеспечивать, по сравнению с тиристорными системами, использующими, как правило, накопление энергии в емкости, лучшее воспламенение рабочей смеси в цилиндрах двигателя на режимах частичных нагрузок за счет большей длительности искрового разряда.

Амплитуда сигнала параметрического датчика не зависит от частоты вращения коленчатого вала двигателя, что позволяет производить установку зажигания так же, как и в классической системе зажигания. Кроме того, конструкция системы зажигания дает возможность изготовления ее радиолюбителями средней квалификации.

Принципиальная схема бесконтактной системы зажигания приведена на рис. 1.

Рис. 1. Принципиальная электрическая схема бесконтактной системы зажигания

Принципиальная электрическая схема бесконтактной системы зажигания

Система содержит источник питания — аккумуляторную батарею 1 напряжением 12 В, добавочное сопротивление 2, катушку зажигания 3, параметрический датчик 4, транзисторный коммутатор 5, выключатель зажигания 6, реле стартера 7.

Параметрический датчик импульсов, работающий с генератором, расположен в корпусе распределителя зажигания. Датчик имеет неподвижный Ш-образный ферритовый сердечник, на среднем стержне которого расположена обмотка III, включенная в цепь базы транзистора генератора, а на боковых — обмотки положительной II и отрицательной I обратной связи, включенные в коллекторную цепь транзистора генератора. Обмотки I и II соединены последовательно-встречно, чтобы их суммарный магнитный поток равнялся нулю при разомкнутом сердечнике.

Ротор датчика имеет магнитопроводящие выступы, которыми можно поочередно замыкать средний и один из боковых стержней Ш-образного сердечника.

В состав транзисторного коммутатора входят генератор датчика, формирующая цепь и выходной каскад.

Генератор датчика (транзистор T1) представляет собой блокинг-генератор, работающий в автоколебательном режиме. Ограничительный диод Д1 служит для защиты перехода эмиттер — база транзистора T1, конденсатор С1 фильтрует всплески питающего напряжения.

Формирующая цепь состоит из диодов Д2, Д3, конденсаторов С4, С5, резистора R2. Выходной каскад, собранный на двух кремниевых транзисторах Т2 и Т3, работающих в ключевом режиме, содержит также диоды Д4, Д5 (для ускорения запирания выходного транзистора); диод Д6 (для защиты от инверсного тока); стабилитрон Д7 (для защиты перехода эмиттер — коллектор транзистора Т3 от напряжения самоиндукции катушки зажигания); конденсатор первичной цепи С6, резистор положительной обратной связи R4 и резисторы R3, R5, R6. Напряжение питания подается через добавочное сопротивление.

Система зажигания работает следующим образом.
При замыкании ротором стержней сердечника, на которых находятся обмотки III и I, усиливается отрицательная обратная связь, генератор не работает, и транзистор Т2 закрывается. На базу транзистора Т3 подается положительный потенциал, транзистор открывается, через первичную обмотку катушки зажигания протекает электрический ток, идет процесс накопления энергии в катушке зажигания.

При замыкании ротором стержней сердечника, на которых находятся обмотки III и II, усиливается положительная обратная связь, транзисторный генератор возбуждается и работает с частотой, определяемой в основном индуктивностью обмотки II и емкостью конденсатора С3 (напряжение на коллекторе T1 показано на рис. 2).

Рис. 2. Выходной сигнал генератора датчика.

Выходной сигнал генератора датчика.

Положительное напряжение генератора через формирующую цепь подается на базу транзистора Т2, транзистор отпирается. Соответственно выходной транзистор Т3 запирается и прерывает ток в первичной обмотке катушки зажигания. Возникает переходный процесс в двух индуктивно-связанных контурах: один образован первичной обмоткой катушки и первичным конденсатором С6, а другой — вторичной обмоткой катушки и емкостью вторичной цепи. В результате переходного процесса во вторичной цепи создается высокое напряжение, достигающее 25—30 кВ, которое распределителем подается на свечи зажигания в порядке работы цилиндров двигателя. Затем процесс повторяется.

Настройка системы зажигания заключается только в подборе сопротивления резистора R1 по силе тока, потребляемого генератором. Порядок работы следующий:

резистор R1 заменяется переменным с номиналом 15 кОм, последовательно с которым включен ограничительный резистор 1—3 кОм;

между клеммой «+» и клеммой «Д» полностью собранного коммутатора включается миллиамперметр (датчик отключен);

коммутатор подключается к источнику, постоянного напряжения 12 В, причем положительный полюс источника подключается к клемме «+», а отрицательный — к корпусу коммутатора;

регулировкой сопротивления резистора R1 добиваются силы тока, равной 100—120 мА;

переменный резистор R1 заменяется постоянным ближайшего выбранного номинала.

Формирующая цепь и выходной каскад транзисторного коммутатора настройки не требуют. При правильно собранной схеме коммутатор сразу начинает работать.

Конструкция. Неподвижная часть датчика системы зажигания сделана из текстолита, в виде рамки для установки сердечника, Сердечник — из феррита марки 2000 НМ, типоразмер Ш4Х4. Число витков обмоток одинаково и равно 30; намотка производится на каркас из любого изоляционного материала (например, из электротехнического картона, прессшпана и т. д.) проводом ПЭЛ 0,25, каркас надевается на стержень сердечника.

Схема намотки приведена на рис. 3.

Рис. 3. Схема намотки катушек датчика.

Схема намотки катушек датчика.

Затем производится установка сердечника в текстолитовую рамку и заливка эпоксидной смолой.

Ротор датчика также изготавливается из текстолита и имеет вид цилиндра диаметром 23 и высотой 20 мм. На текстолит надевается магнитопроводящий экран с прорезями. Его конструкция показана на рис. 4.

Рис. 4. Ротор параметрического датчика

Ротор параметрического датчика

Датчик может устанавливаться в распределитель для классической системы зажигания на подвижную пластину прерывателя. В описываемой конструкции в качестве примера приводится датчик-распределитель завода АТЭ имени 60-летия Октября (рис. 5).

Рис. 5. Вид на датчик-распределитель

Вид на датчик-распределитель

Зазор между ротором и стержнями сердечника должен быть 0,2—0,5 мм.

В выходном каскаде, кроме указанных на схеме рис. 1 транзисторов КТ801Б и КТ808А, могут использоваться КТ809А и КТ812А.



Элементы транзисторного коммутатора, кроме транзисторов Т1, Т3, диодов Д6, Д7, конденсатора С1 и резистора R3, смонтированы на печатной плате из одностороннего фольгированного стеклотекстолита толщиной 2 мм. Печатная плата изготовлена методом химического травления, причем печатные проводники должны быть максимально возможной ширины при расстояниях между ними не менее 2 мм. Вид на плату со стороны расположения элементов показан на рис. 6.

Вид на плату со стороны расположения элементов

Корпус транзисторного коммутатора, куда установлена печатная плата, одновременно является радиатором для транзисторов Т1, Т3 и диодов Д6, Д7 (рис. 7).

Корпус транзисторного коммутатора, куда установлена печатная плата

Площадь поверхности корпуса составляет около 470 см2. Транзисторы Т2, Т3 и диод Д6 необходимо тщательно изолировать от корпуса. Для этого можно использовать слюдяные или фторопластовые прокладки толщиной 0,1 мм.

Соединение элементов, установленных на корпусе, с печатной платой осуществляется любым медным изолированным проводом сечением не менее 0,5 мм2. Транзисторный коммутатор соединяется с остальными элементами системы зажигания с помощью специальной четырехклеммовой колодки от автомобилей «Жигули» ВАЗ. Могут также использоваться и обычные штекерные разъемы, принятые в радиотехнике и рассчитанные на силу тока 8—10 А.

В системе зажигания применена специальная катушка зажигания марки Б116, которая будет выпускаться заводом АТЭ имени 60-летия Октября с 1981 г. для системы зажигания автомобиля «Москвич-2140». Катушка собрана по трансформаторной схеме и имеет повышенный коэффициент трансформации по сравнению с катушками в классической системе зажигания. В таблице приведены основные параметры катушки Б116 и для сравнения катушки марки Б115В, используемой в системе зажигания автомобиля «Москвич-412».

Таблица
Параметры катушек зажигания

Параметры катушек зажигания

Добавочное сопротивление марки СЭ107 изготавливается отдельно от катушки зажигания и состоит из двух секций сопротивлением 0,52 Ом каждая. В момент пуска двигателя одна секция закорачивается. Резисторы намотаны на керамический каркас проводом из константана, мощность рассеяния составляет около 50 Вт.

Бесконтактная система зажигания работоспособна в широком диапазоне температур от —40° С до +80° С, поэтому ее можно располагать в подкапотном пространстве. Установка датчика-распределителя и катушки зажигания производится на местах, предусмотренных для штатной системы зажигания.

Транзисторный коммутатор и добавочное сопротивление могут находиться на брызговике крыла, ближе к вентилятору. Крепление коммутатора и добавочного сопротивления осуществлено винтами диаметром 6 мм.

Монтаж бесконтактной системы зажигания должен быть выполнен тщательно, медным проводом сечением не менее 0,75 мм2. Соединение транзисторного коммутатора, катушки зажигания и датчика с корпусом автомобиля должны обеспечивать хороший контакт.

Общий вид и монтажная схема системы л схема зажигания приведены на рис. 8, 9.

Рис. 8. Общий вид бесконтактной системы зажигания с параметрическим датчиком

Общий вид бесконтактной системы зажигания с параметрическим датчиком



Рис. 9. Монтажная схема бесконтактной системы зажигания

Монтажная схема бесконтактной системы зажигания

Система зажигания выдает «искру» даже при провертывании коленчатого вала двигателя от руки, поэтому установка зажигания на автомобиле по первому цилиндру производится, как и для классической системы, следующим образом. Контрольная лампа включается между клеммой «К» транзисторного коммутатора и «массой». При открытом состоянии выходного транзистора лампа горит тускло. При переходе транзистора в состояние отсечки лампа ярко вспыхивает, что и указывает на момент подачи искры. Зазор в свечах устанавливается в пределах 0,7—0,9 мм.

В эксплуатации бесконтактная система зажигания практически не требует обслуживания. Необходимо только смазывать распределитель в соответствии с инструкцией, а также следить за чистотой клеммных и штекерных соединений.

Проверка исправности бесконтактных систем зажигания на автомобилях аналогична проверке классической системы и может быть выполнена следующим образом. При неработающем двигателе вынимают высоковольтный провод из центрального гнезда распределителя и устанавливают наконечник провода на расстоянии 2— 5 мм от кузова или двигателя автомобиля. Включают выключатель зажигания и провертывают коленчатый вал двигателя. Если искра есть, неисправность надо искать поочередно в распределителе, высоковольтных проводах или в свечах. Если искры нет, то необходимо убедиться в исправности проводки и надежности контактных соединений в системе зажигания.

Категорически запрещается замыкать накороткб выводные клеммы, а также производить какие-либо переключения соединительных проводов, не предусмотренные монтажной схемой. Соблюдение указанных требований при монтаже и эксплуатации обеспечивает исправную и долголетнюю работу бесконтактной системы зажигания.



ЛИТЕРАТУРА
Балагуров В. А. Аппараты зажигания.— М., Машиностроение, 1968.
Галкин Ю. М. Электрооборудование автомобилей.и тракторов.— М., Машиностроение, 1967.
Глезер Г. Н., Опарин И. М. Автомобильные электронные системы зажигания.— М.( «Машиностроение, 1977.
Моргулев А.С, Сонин Е. К. Полупроводниковые системы зажигания.—М., Энергия, 1972.

 
 


© 2023 - Altay-Krylov.ru («как заработать в деревне» или «как выжить в деревне»)