САЙТ КРЫЛОВА ПАВЛА
Главная
Схемы Ветрогенераторы Собаки Стройка Книги О сельском хозяйстве и прочем


О строительстве традиционном и не очень.

Характеристика отопительных приборов. Конструкция отопительных приборов. Выбор и размещение отопительных приборов.

Один из основных элемоптов систем водяного отопления — отопительный прибор -предназначен для теплопередачи от теплоносители в обогреваемое помещение.

Для поддержания необходимой температуры помещения требуется, чтобы в каждый момент времени теплопотери помещения Qп покрывались теплоотдачей отопительного прибора Qпp и труб Qтp.

Схема теплоотдачи отопительного прибора Qпp и труб для возмещения теплопотерь помещения Qп и Qдоп при теплопередаче Qт со стороны теплоносителя воды приведена на рис. 24.

Схема теплопередачи отопительного прибора, расположенного у внешнего ограждения здания

Рис. 24. Схема теплопередачи отопительного прибора, расположенного у внешнего ограждения здания

Теплота Qт, подводимая теплоносителем для отопления данного помещения, должна быть больше теплопотерь Qп на величину дополнительных теплопотерь Qдоп вызываемых усиленным прогреванием строительных конструкций здания.

Qт=Qп + Qдоп

Отопительный прибор характеризуется площадью нагревательной поверхности Fпp, м2, рассчитываемой для обеспечения требуемой теплоотдачи прибора.

Отопительные приборы по преобладающему способу теплоотдачи подразделяются на радиационные (потолочные излучатели), конвективно-радиационные (приборы с гладкой внешней поверхностью) и конвективные (конвекторы с ребристой поверхностью).

При обогреве помещений потолочными излучателями {рис. 25) нагрев осуществляется главным образом за счет лучистого теплообмена между отопительными радиаторами (отопительными панелями) и поверхностью строительных конструкций помещения.

Подвесная металлическая отопительная панель

Рис. 25. Подвесная металлическая отопительная панель: а — с плоским экраном; б — с экраном волнообразной формы; 1 — греющие трубы; 2 — козырек; 3 — плоский экран; 4 — тепловая изоляция; 5 — волнообразный экран

Излучение от нагретой панели, попадая на поверхность ограждений и предметов, частично поглощается, частично отражается. При этом возникает так называемое вторичное излучение, также в конце концов поглощаемое предметами и ограждениями помещения.

Благодаря лучистому теплообмену повышается температура внутренней поверхности ограждений по сравнению с температурой при конвективном отоплении, а температура поверхности внутренних ограждений в большинстве случаев превышает температуру воздуха помещения.

При панельно-лучистом отоплении благодаря повышению температуры поверхностей в помещении создается обстановка, благоприятная для человека. Известно, что самочувствие человека значительно улучшается при повышении доли конвективного теплопереноса в общей теплоотдачи его тела и уменьшении излучения на холодные поверхности (радиационного охлаждения). Это как раз и обеспечивается при лучистом отоплении, когда теплоотдача человека путем излучения уменьшается вследствие повышения температуры поверхности ограждений.

При панельно-лучистом отоплении возможно понижение против обычной (нормативной для конвективного отопления) температуры воздуха в помещении (в среднем на 1-3° С), в связи с чем ещё более возрастает конвективная теплоотдача человека. Это также способствует улучшению самочувствия человека. Установлено, что в обычных условиях хорошее самочувствие людей обеспечивается при температуре воздуха в помещении 17,4° С при стеновых отопительных панелях и при 19,3° С при конвективном отоплении. Отсюда возможно сокращение расхода тепловой энергии на отопление помещений.

Среди недостатков системы панельно-лучистого отопления следует отметить:

• некоторые дополнительные увеличения теплопотерь через наружные ограждения в тех местах, где в них заделаны греющие элементы;-

• необходимость специальной арматуры для индивидуального регулирования теплоотдачи бетонных панелей;

• значительную тепловую инерцию этих панелей.


Приборы с гладкой внешней поверхностью являются радиаторы секционные, радиаторы панельные, гладкотрубные приборы.

Приборы с ребристой нагревательной поверхностью — конвекторы, ребристые трубы (рис. 26).

Схемы отопительных приборов различных видов (поперечный разрез)

Рис. 26. Схемы отопительных приборов различных видов (поперечный разрез): а — радиатор секционный; б — радиатор стальной панельный; в — гладкотрубный прибор из трех труб; г — конвектор с кожухом; Д — прибор из двух ребристых труб: 1 — канал для теплоносителя; 2 — пластина; 3 - ребро

По материалу, из которого изготовляются отопительные приборы, различают металлические, комбинированные и неметаллические приборы. Металлические приборы выполняют в основном из серого чугуна и стали (листовой стали и стальных труб). Применяют также медные трубы, листовой и литой алюминий и другие металлы.

В комбинированных приборах используют теплопроводный материал (бетон, керамику и т. п.), в который заделывают стальные или чугунные греющие элементы (панельные радиаторы) либо оребренные металлические трубы, помещенные и неметаллический (например асбестоцомептпий) кожух (конвекторы).

К неметаллическим приборам относятся бетонные панельные радиаторы с заделанными пластмассовыми или стеклянными трубами, либо с пустотами, а также керамические, пластмассовые и другие радиаторы.

По высоте все отопительные приборы подразделяются на высокие (высотой более 650 мм), средние (более 400 до 650 мм), низкие (более 200 до 400 мм) и плинтусные (до 200 мм).

По величине тепловой инерции можно выделить приборы малой и большой инерции. Малоинерционные приборы имеют небольшую массу и вмещают небольшое количество воды. Такие приборы, выполненные на основе металлических труб малого сечения (например конвекторы) быстро изменяют теплоотдачу в помещение при регулировании количества впускаемого в прибор теплоносителя. Приборы имеющие большую тепловую инерцию — массивные, вмещающие значительное количество воды (например бетонные или секционные радиаторы), теплоотдачу изменяют медленно.

Для отопительных приборов помимо экономических, архитектурно-строительных, санитарно-гигиенических и производственно-монтажных требований добавляются еще теплотехнические требования. От прибора требуется передача от теплоносителя через единицу площади в помещение наибольшего теплового потока. Для выполнения этого требования прибор должен обладать повышенным значением коэффициента теплоотдачи Kпр, по сравнению со значением одного из типов секционных радиаторов, который принят за эталон (радиатор чугунный типа Н-136).

В табл. 20 приведены теплотехнические показатели и условными знаками отмечены другие показатели приборов. Знаком «плюс» отмечены положительные показатели приборов, знаком «минус» — отрицательные. Два плюса указывают на показатели, определяющие основное преимущество какого-либо вида приборов.

Показатели отопительных приборов
Таблица 20

Показатели отопительных приборов

Конструкция отопительных приборов

Радиатором секционным называется прибор конвективно-радиационного типа, состоящий из отдельных колончатых элементов — секций с каналами круглой или элипсообразной формы. Такой радиатор отдает в помещение радиацией около 25% общего теплового потока, передаваемого от теплоносителя (остальные 75% — конвекцией) и именуется «радиатором» лишь по традиции.

Секции радиатора отливают из серого чугуна, их можно компоновать в приборы различной площади. Секции соединяют на ниппелях с прокладками из картона, резины или паронита.

Известны разнообразные конструкции одно-, двух-, и многоколонных секций различной высоты, но наиболее распространены двухколончатые секции (рис. 27) средних (монтажная высота hм = 500 мм) радиаторов.

Двухколончатая секция радиатора

Рис. 27. Двухколончатая секция радиатора: hп — полная высота; hм — монтажная высота (строительная); b — строительная глубина

Производство чугунных радиаторов трудоемко, монтаж затруднен из-за громоздкости и значительной массы собранных приборов. Радиаторы не могут считаться удовлетворяющими санитарно-гигиеническим требованиям, так как очистка от пыли межсекционного пространства сложна. Эти приборы обладают значительной тепловой инерцией. Наконец, следует отметить несоответствие их внешнего вида интерьеру помещений в зданиях современной архитектуры. Указанные недостатки радиаторов вызывают необходимость их замены более легкими и менее металлоемкими приборами. Не смотря на это чугунные радиаторы — это наиболее распространенный в настоящее время отопительный прибор.

В настоящее время промышленностью выпускается чугунные секционные радиаторы со строительной глубиной 90мм и 140 мм (типа «Москва» — сокращенно М, типа IСтандартI - МС и другие). На рис. 28 приведены конструкции выпускаемых чугунных радиаторов.

Чугунные радиаторы: а — М-140-АО (М-140-АО-300); б — М-140; в — РД-90

Рис. 28. Чугунные радиаторы: а — М-140-АО (М-140-АО-300); б — М-140; в — РД-90

Все чугунные радиаторы рассчитаны на рабочее давление до 6 кгс/см2. Измерителями поверхности нагрева нагревательных приборов служат физический показатель — квадратный метр поверхности нагрева и теплотехнический показатель - эквивалентный квадратный метр (экм2). Эквивалентным квадратным метром называется площадь нагревательного прибора, отдающая в 1 час 435 ккал тепла при разности средней температуры теплоносителя и воздуха 64,5° С и расходе воды в этом приборе 17,4 кг/час по схеме движения теплоносителя сверху вниз.

Технические характеристики радиаторов приведены в табл. 21.
Поверхность нагрева чугунных радиаторов и ребристых труб
Таблица 21

Технические характеристики радиаторов

Продолжение табл. 21

Технические характеристики радиаторов

Стальные панельные радиаторы состоят из двух отштампованных листов, образующих горизонтальные коллекторы, соединенные вертикальными колоннами (колончатая форма), или горизонтальные параллельно и последователвно соединенные каналы (змеевиковая форма). Змеевик можно выполнить из стальной трубы и приварить к одному профилированному стальному листу; такой прибор называется листотрубным.

Чугунные радиаторы

Рис. 29. Чугунные радиаторы

Чугунные радиаторы

Рис. 30. Чугунные радиаторы

Чугунные радиаторы

Рис. 31. Чугунные радиаторы

Чугунные радиаторы

Рис. 32. Чугунные радиаторы

Чугунные радиаторы

Рис. 33. Чугунные радиаторы

 Схемы каналов для теплоносителя в панельных радиаторах

Рис. 34. Схемы каналов для теплоносителя в панельных радиаторах: а — колончатой формы; б — змеевиковый двухходовой, в — змеевиковый четырехходовой

Стальные панельные радиаторы отличаются от чугунных меньшей массой и тепловой инерцией. При уменьшении массы примерно в 2,5 раза показатель теплопередачи не хуже чем у чугунных радиаторов. Их внешний вид удовлетворяет архитектурно-строительным требованиям, стальные панели легко очищаются от пыли.

Стальные панельные радиаторы имеют относительно небольшую площадь нагревательной поверхности, из-за чего иногда приходится прибегать к установке панельных радиаторов попарно (в два ряда на расстоянии 40 мм).

В табл. 22 приведены характеристики выпускаемых стальных штампованных радиаторных панелей.

Техническая характеристика стальных штампованных радиаторов
Таблица 22

Техническая характеристика стальных штампованных радиаторов

Продолжение табл. 22

Техническая характеристика стальных штампованных радиаторов

Продолжение табл. 22

Техническая характеристика стальных штампованных радиаторов

Бетонные панельные радиаторы (отопительные панели) (рис. 35) могут иметь бетонированные нагревательные элементы змеевиковой или регистровой формы из стальных труб диаметром 15-20 мм, а также бетонные, стеклянные или пластмассовые каналы различной конфигурации.

Бетонная нагревательная панель

Рис. 35. Бетонная нагревательная панель



Бетонные панели обладают коэффициентом теплопередачи, близким к показателям других приборов с гладкой поверхностью, а также высоким тепловым напряжением металла. Приборы, особенно совмещенного типа, отвечают строгим санитарно-гигиеническим, архитектурно-строительным и другим требованиям. К недостаткам совмещенных бетонных панелей относятся трудности ремонта, большая тепловая инерция, усложняющая регулирование тепло-подачи в помещения. Недостатками приборов приставного типа являются повышенные затраты ручного труда при их изготовлении и монтаже, сокращение полезной площади пола помещения. Увеличиваются также теплопотери через дополнительно прогреваемые наружные ограждения зданий.

Гладкотрубным называют прибор из нескольких соединенных вместе стальных труб, образующих каналы для теплоносителя змеевиковой или регистровой формы (рис. 36).

Формы соединения стальных труб в гладкотрубные отопительные приборы

Рис. 36. Формы соединения стальных труб в гладкотрубные отопительные приборы: а — змеевиковая форма; б — регистровая форма: 1 — нитка; 2 — колонка

В змеевике трубы соединены последовательно по направлению движения теплоносителя, что увеличивает скорость его движения и гидравлическое сопротивление прибора. При параллельном соединении труб в регистре поток теплоносителя делится, скорость его движения и гидравлическое сопротивление прибора уменьшается.

Приборы сваривают из труб Ду = 32—100мм, расположенных друг от друга на расстоянии на 50 мм превышающем их диаметр, что уменьшает взаимное облучение и соответственно увеличивает теплоотдачу в помещение. Гладкотрубные приборы обладают самым высоким коэффициентом теплопередачи, их пылесобирающая поверхность невелика и они легко очищаются.

Вместе с тем гладкотрубные приборы тяжелы и громоздки, занимают немало места, увеличивают расход стали в системах отопления, имеют непривлекательный внешний вид. Их применяют в редких случаях, когда не могут быть использованы приборы других видов (например, для отопления теплиц).

Характеристики гладкотрубных регистров приведены в табл. 23.

Поверхность нагрева 1 м гладкой трубы регистра, экм
Таблица 23

Поверхность нагрева 1 м гладкой трубы регистра, экм

Конвектор — это прибор конвективного типа, состоящий из двух элементов — ребристого нагревателя и кожуха (рис. 37).

Схемы конвекторов: а — с кожухом; б — без кожуха:

Рис. 37. Схемы конвекторов: а — с кожухом; б — без кожуха: 1 — нагревательный элемент; 2 — кожух; 3 — воздушный клапан; 4 — оребрение труб

Кожух декорирует нагреватель и способствует повышению теплопередачи благодаря увеличению подвижности воздуха у поверхности нагревателя. Конвектор с кожухом передает в помещение конвекцией до 90-95% всего теплового потока (табл. 24).

Зависимость теплопередачи конвекторов с кожухом от высоты кожуха (hк)

Таблица 24

Зависимость теплопередачи конвекторов с кожухом от высоты кожуха (hк)

Прибор, в котором функции кожуха выполняет оребрение нагревателя, называют конвектором без кожуха. Нагреватель выполняют из стали, чугуна, алюминия и других металлов, кожух — из листовых материалов (стали, асбестоцемента и др.)

Конвекторы обладают сравнительно низким коэффициентом теплопередачи. Тем не менее они находят широкое применение. Это объясняется простотой изготовления, монтажа и эксплуатации, а также малой металлоемкостью.

Основные технические характеристики конвекторов приведены в табл. 25.

Техническая характеристика конвекторов
Таблица 25

Техническая характеристика конвекторов

Продолжение табл. 25

Техническая характеристика конвекторов

Продолжение табл. 25

Техническая характеристика конвекторов

Примечание: 1. При многорядной установке плинтусных конвекторов КП вводится поправка на поверхность нагрева в зависимости от числа рядов по вертикали и горизонтали: при двухрядной установке по вертикали 0,97, трехрядной — 0,94, четырехрядной — 0,91; для двух рядов по горизонтали поправка 0,97. 2. Показатели концевых и проходных моделей конвекторов одинаковы. Проходные конвекторы имеют индекс А (например Нн-5А, Н-7А).

Ребристой трубой называют прибор конвективного типа, представляющий собой фланцевую чугунную трубу, наружная поверхность которой покрыта совместно отлитыми тонкими ребрами (рис 33).

Площадь внешней поверхности ребристой трубы во много раз больше, чем площадь поверхности гладкой трубы того же диаметра и длины. Это придает отопительному прибору особую компактность. Кроме того, пониженная температура поверхности ребер при использовании высокотемпературного теплоносителя, сравнительная простота изготовления и невысокая стоимость обуславливают применение этого малоэффективного в теплотехническом отношении, тяжелого прибора. К недостаткам ребристых труб относятся также несовременный внешний вид, малая механическая прочность ребер и трудность очистки от пыли. Ребристые трубы применяют как правило во вспомогательных помещениях (котельных, складских помещениях, гаражах и т. д.). Промышленность выпускает круглые ребристые чугунные трубы длиной 1-2м. Их устанавливают горизонтально в несколько ярусов и соединяют по змеевиковой схеме на болтах с помощью «калачей» — фланцевых чугунных двойных отводов и контрфланцев.

Для сравнительной теплотехнической характеристики основных отопительных приборов в табл. 25 приведена относительная теплоотдача приборов длиной 1,0 м в равных тепло-гидравлических условиях при использовании в качестве теплоносителя —воды (теплоотдача чугунного секционного радиатора глубиной 140мм принята за 100%).

Как видно, высокой теплоотдачей на 1.0 м длины отличаются секционные радиаторы и конвекторы с кожухом; наименьшую теплоотдачу имеют конвекторы без кожуха и особенно одиночные гладкие трубы.

Относительная теплоотдача отопительных приборов длиной 1,0 м Таблица 26

Относительная теплоотдача отопительных приборов длиной 1,0 м

Выбор и размещение отопительных приборов

При выборе вида и типа отопительного прибора учитывают назначение, архитектурную планировку и особенности теплового режима помещения, место и длительность пребывания людей, вид системы отопления, технико-экономические и санитарно-гигиенические показатели прибора.

Чугунная ребристая труба с круглыми ребрами:

Рис. 38. Чугунная ребристая труба с круглыми ребрами: 1 — канал для теплоносителя; 2 — ребра; 3 — фланец

Для создания благоприятного теплового режима выбирают приборы, обеспечивающие равномерное обогревание помещений.

Металлические отопительные приборы устанавливают преимущественно под световыми проемами, причем под окнами длина прибора желательна не менее 50-75% длины проема, под витринами и витражами приборы располагают по всей их длине. При размещении приборов под окнами {рис. 39а) вертикальные оси прибора и оконного проема должны совпадать (допускается отклонение не более 50мм).

Приборы, расположенные у наружных ограждений, способствуют повышению температуры внутренней поверхности в нижней части наружной стены и окна, что уменьшает радиационное охлаждение людей. Восходящие потоки теплого воздуха, создаваемые приборами, препятствуют (если нет подоконников, перекрывающих приборы), попаданию охлажденного воздуха в рабочую зону {рис. 40а). В южных районах с короткой теплой зимой, а также при кратковременном пребывании людей отопительные приборы допустимо устанавливать у внутренних стен помещений {рис. 39б). При этом сокращается число стояков и протяженность теплопроводов и повышается теплопередача приборов (примерно на 7-9%), но возникает неблагоприятное для здоровья людей движение воздуха с пониженной температурой у пола помещения (рис. 40в).

Размещение отопительных приборов в помещениях (планы):

Рис. 39. Размещение отопительных приборов в помещениях (планы): а — под окнами; б — у внутренних стен; п — отопительный прибор

Схемы циркуляции воздуха в помещениях (разрезы) при разном расположении отопительных приборов:

Рис. 40. Схемы циркуляции воздуха в помещениях (разрезы) при разном расположении отопительных приборов: а-под окнами без подоконника; б — под окнами с подоконником в — у внутренней стены; п — отопительный прибор

Расположение под окном помещения отопительного прибора:

Рис. 41. Расположение под окном помещения отопительного прибора: а — длинного и низкого (желательно); б — высокого и короткого (нежелательно)

Вертикальные отопительные приборы устанавливают возможно ближе к полу помещений. При значительном подъеме прибора над уровнем пола воздух у поверхности пола может переохлаждаться, так как циркуляционные потоки нагреваемого воздуха, замыкаясь на уровне размещения прибора, не захватывают и не прогревают в этом случае нижнюю часть помещения.

Чем ниже и длиннее отопительный прибор (рис. 41а) тем ровнее температура помещения и лучше прогревается весь объем воздуха. Высокий и короткий прибор (рис. 41б) вызывает активный подъем струи теплого воздуха, что приводит к перегреванию верхней зоны помещения и опусканию охлажденного воздуха по обеим сторонам такого прибора в рабочую зону.

Способность высокого отопительного прибора вызывать активный восходящий поток теплого воздуха можно использовать для отопления помещений увеличенной высоты.

Вертикальные металлические приборы, как правило, размещают открыто у стены. Однако возможна установка их под подоконниками, в стенных нишах, со специальным ограждением и декорированием. На рис. 42 показано несколько приемов установки отопительных приборов в помещениях.

Размещение отопительных приборов-а - в декоративном шкафу;

Рис. 42. Размещение отопительных приборов-а - в декоративном шкафу; б - в глубокой нише; в - в специальном укрытии; г — за щитом; д — в два яруса

Укрытие прибора декоративным шкафом, имеющим две щели высотой до 100 мм (рис. 42а), уменьшает теплопередачу прибора на 12% по сравнению с открытой его установкой у глухой стены. Для передачи в помещение заданного теплового потока, площадь нагревательной поверхности такого прибора должна быть увеличена на 12%. Размещение прибора в глубокой открытой нише (рис. 42б) или одного над другим в два яруса (рис. 42д) уменьшает теплопередачу на 5%. Возможна однако, скрытая установка приборов, при которой теплопередача не изменяется (рис. 42в) или даже увеличивается на 10% (рис. 42г). В этих случаях не требуется увеличивать площадь нагревательной поверхности прибора или даже можно её уменьшить.

Расчет площади, размера и числа отопительных приборов

Площадь теплоотдающей поверхности отопительного прибора определяют в зависимости от принятого вида прибора, его расположения в помещении и схемы присоединения к трубам. В жилых помещениях число приборов, а следовательно, и необходимую теплоотдачу каждого прибора устанавливают, как правило, по числу оконных проемов. В угловых помещениях добавляют еще один прибор, помещаемый в глухой торцевой стене.

Задача расчета заключается прежде всего в определении площади внешней нагревательной поверхности прибора, обеспечивающей в расчетных условиях необходимый тепловой поток от теплоносителя в помещение. Затем по каталогу приборов, исходя из расчетной площади, подбирается ближайший торговый размер прибора (число секций или марка радиатора (длина конвектора или ребристой трубы). Число секций чугунных радиаторов определяют по формуле: N=Fpb4/f1b3;

где f1- площадь одной секции, м2; типа радиатора, принятого к установке в помещении; Ь4 — поправочный коэффициент, учитывающий способ установки радиатора в помещении; Ь3 — поправочный коэффициент, учитывающий число секций в одном радиаторе и вычисляется по формуле: b3=0,97+0,06/Fp;

где Fp - расчетная площадь отопительного прибора, м2.

1)Системы водяного отопления. Общие сведения о местном отоплении индивидуальных жилых домов. Рекомендации по выбору и эксплуатации систем водяного отопления.

2)Теплогенераторы и котлы. Установка теплогенераторов.

3)Характеристика отопительных приборов. Конструкция отопительных приборов. Выбор и размещение отопительных приборов.

4)Теплопроводы систем отопления. Назначение, размещение и сортамент теплопроводов в зданиях.

5)Монтаж систем водяного отопления. Группировка, опрессовка и установка радиаторов. Монтаж стояков и подводок к приборам


altay-krylov@yandex.ru